Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 196: 105616, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945231

RESUMO

Insect nicotinic acetylcholine receptors (nAChRs) are the directed targets of many insecticides. However, there have been no reports on the molecular characterization of the nAChR gene family or the causal association between nAChR α1 and resistance to insecticides in S. exigua, which is a significant agricultural pest. In this study, we identified a total of 9 candidate nAChR subunits in S. exigua, namely nAChR α1-α7 and nAChR ß1-ß2. For functional validation roles of Seα1 in insecticide resistance of S. exigua, we introduced a âˆ¼ 1041-bp deletion of the Seα1 gene in a homozygous mutant strain (Seα1-KO) by CRISPR/Cas9 genome editing system, resulting in a premature truncation of the Seα1 protein and the subsequent loss of functional transmembrane (TM) 3 and TM4 elements. Compared with WH-S strain (wild-type strain), the Seα1-KO strain exhibited 2.62-folds resistant to trifluoropyrimidine, 8.3-folds resistant to dimehypo, and 5.28-folds resistant to dinotefuran, but no significant change in susceptibility to emamectin benzoate, spinetoram, lambda-cyhalothrin, permethrin and chlorpyrifos. Thus, this study has laid a solid foundation for investigating the role of nAChRs in S. exigua, and provides evidence for the crucial involvement of the α1 subunit in the mechanism of trifluoropyrimidine, dimehypo, and dinotefuran in S. exigua. Moreover, it provides a reference for the value of Seα1 subunit and its homologues in other species as insecticide targets.


Assuntos
Inseticidas , Receptores Nicotínicos , Animais , Inseticidas/farmacologia , Spodoptera/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Sistemas CRISPR-Cas , Tecnologia
2.
Pest Manag Sci ; 79(12): 5044-5052, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37556562

RESUMO

BACKGROUND: Periplocoside P (PSP) is a major component of Periploca sepium Bunge known for its potent insecticidal activity. V-Type adenosine triphosphatase (V-ATPase), which is widely distributed in the cytoplasmic membranes and organelles of eukaryotic cells, plays a crucial role in synaptic excitability conduction. Previous research has shown that PSP targets the apical membrane of goblet cells in the insect midgut. However, the effects of PSP on synaptic transmission at the neuromuscular junction are often overlooked. RESULTS: The bioassay revealed that Drosophila adults with different genetic backgrounds showed varying levels of susceptibility to PSP in the order: parats1 > parats1 ;DSC1-/- ≈ w1118 > DSC1-/- . Intracellular electrode recording demonstrated that PSP, similar to bafilomycin A1, had an impact on the amplitude of the excitatory junction potential (EJP) and accelerated excitability decay. Furthermore, the alteration in EJP amplitude is concentration-dependent. Another surprising discovery was that the knockout DSC1 channel showed insensitivity to PSP. CONCLUSION: Our findings confirm that PSP can influence synaptic transmission at the neuromuscular junction of Drosophila larvae by targeting V-ATPase. These results provide a basis for investigating the mechanism of action of PSP and its potential application in designing novel insecticides. © 2023 Society of Chemical Industry.


Assuntos
Drosophila melanogaster , Inseticidas , Animais , Adenosina Trifosfatases , Inseticidas/farmacologia , Drosophila , Transmissão Sináptica , Junção Neuromuscular
3.
BMC Plant Biol ; 23(1): 291, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259047

RESUMO

BACKGROUND: Furofuran lignans, the main insecticidal ingredient in Phryma leptostachya, exhibit excellent controlling efficacy against a variety of pests. During the biosynthesis of furofuran lignans, Dirigent proteins (DIRs) are thought to be dominant in the stereoselective coupling of coniferyl alcohol to form ( ±)-pinoresinol. There are DIR family members in almost every vascular plant, but members of DIRs in P. leptostachya are unknown. To identify the PlDIR genes and elucidate their functions in lignan biosynthesis, this study performed transcriptome-wide analysis and characterized the catalytic activity of the PlDIR1 protein. RESULTS: Fifteen full-length unique PlDIR genes were identified in P. leptostachya. A phylogenetic analysis of the PlDIRs classified them into four subfamilies (DIR-a, DIR-b/d, DIR-e, and DIR-g), and 12 conserved motifs were found among them. In tissue-specific expression analysis, except for PlDIR7, which displayed the highest transcript abundance in seeds, the other PlDIRs showed preferential expression in roots, leaves, and stems. Furthermore, the treatments with signaling molecules demonstrated that PlDIRs could be significantly induced by methyl jasmonate (MeJA), salicylic acid (SA), and ethylene (ETH), both in the roots and leaves of P. leptostachya. In examining the tertiary structure of the protein and the critical amino acids, it was found that PlDIR1, one of the DIR-a subfamily members, might be involved in the region- and stereo-selectivity of the phenoxy radical. Accordingly, LC-MS/MS analysis demonstrated the catalytic activity of recombinant PlDIR1 protein from Escherichia coli to direct coniferyl alcohol coupling into ( +)-pinoresinol. The active sites and hydrogen bonds of the interaction between PlDIR1 and bis-quinone methide (bisQM), the intermediate in ( +)-pinoresinol formation, were analyzed by molecular docking. As a result, 18 active sites and 4 hydrogen bonds (Asp-42, Ala-113, Leu-138, Arg-143) were discovered in the PlDIR1-bisQM complex. Moreover, correlation analysis indicated that the expression profile of PlDIR1 was closely connected with lignan accumulations after SA treatment. CONCLUSIONS: The results of this study will provide useful clues for uncovering P. leptostachya's lignan biosynthesis pathway as well as facilitate further studies on the DIR family.


Assuntos
Lignanas , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Simulação de Acoplamento Molecular , Filogenia , Cromatografia Líquida , Espectrometria de Massas em Tandem
4.
Pestic Biochem Physiol ; 191: 105365, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963935

RESUMO

Periplocoside T (PST) from Periploca sepium has insecticidal activity against some lepidopterans, which can significantly inhibit the activity of vacuolar-type H+-ATPases (V-ATPase). V-ATPase is involved in the release of neurotransmitters in vesicles during nerve signal transduction. However, there are actions of PST on behavior and sensory-central nervous system (CNS)-motor neural circuit which are commonly overlooked. After exposure to 500 mg/L PST for 48 h, the difference of the proportion of larvae responding to stimuli in the four Drosophila strains was not significant as compared to controls, but larval mouth hook movement and body wall motion were significantly decreased as compared to controls, and the decrease was more obvious in parats1; DSC1-/- and DSC1-/- strains, especially in parats1; DSC1-/- strain. Compared with control (DMSO), the excitatory junction potential (EJP) frequencies of sensory-CNS-motor circuits in the four Drosophila strains after PST or bafiloymcin A1 (BA1, a V-ATPase specific inhibitor) treatment gradually decreased with time, and the decreasing amplitude of BA1 treatment was greater than that of PST treatment, but both were higher than that of the control. The decay amplitude of EJP frequency in two strains with DSC1 channel knockout was lower than that of w1118 and parats1 strains without DSC1 channel knockout. Thus, the results indicated that PST, similar to BA1, could inhibit the transmission of sensory-CNS-motor circuit excitability of Drosophila larvae by inhibiting the activity of V-ATPase, and DSC1 channel play a role of in regulating the stability of nervous system.


Assuntos
Inseticidas , Periploca , Animais , Drosophila melanogaster , Larva , Inseticidas/farmacologia , Drosophila
5.
Pest Manag Sci ; 79(1): 447-453, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36175391

RESUMO

BACKGROUND: Insect cytochrome P450 monooxygenases play important roles in the detoxification metabolism of endogenous and exogenous compounds. Haedoxan A (HA) from Phryma leptostachya L. is a highly efficient natural pesticide used to control houseflies and mosquitos. CYP4C21 and CYP304A1 were previously demonstrated to be transcriptionally increased in Aedes albopictus in response to HA exposure, but their involvement in HA metabolism is unknown. RESULTS: Our data showed that CYP304A1 expression levels in A. albopictus were highest in third-instar larvae, and the expression level of CYP4C21 decreased significantly with the growth of instars, with the lowest occurring in the pupal stage. Compared with the control, the silencing of CYP304A1 and CYP4C21 genes by chitosan nanoparticle-mediated RNA interference could deplete 58.2% and 54.0% of the expression of corresponding genes, respectively. The bioassay data showed that knocking down the expression of CYP304A1 increased the mortality of A. albopictus when exposed to HA at LC30 and LC50 doses, but did not significantly increase mortality after silencing CYP4C21. Our data demonstrated that CYP304A1, but not CYP4C21, may be involved in HA detoxification. Moreover, the resistance ratio of CYP304A1 overexpressing flies was approximately 2-fold higher than that of the control line. The metabolized product of HA by CYP304A1 needs to be further confirmed by in vitro expression. CONCLUSION: This finding showed that inducibility was not always linked to detoxifying capabilities, and enhanced our understanding of the molecular basis of HA metabolic detoxification in A. albopictus. © 2022 Society of Chemical Industry.


Assuntos
Aedes , Drosophila , Animais , Interferência de RNA , Aedes/genética
6.
Insects ; 13(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36421978

RESUMO

MicroRNAs (miRNAs) drive the post-transcriptional repression of target mRNAs and play important roles in a variety of biological processes. miR-2766-3p is conserved and abundant in Lepidopteran species and may be involved in a variety of biological activities. In this study, Sex-miR-2766-3p was predicted to potentially bind to the 3' untranslated region (UTR) of cap 'n' collar isoform C (CncC) in Spodoptera exigua, and Sex-miR-2766-3p was confirmed to regulate the expression of SeCncC through screening with a luciferase reporter system. Although CRISPR/Cas9 has been extensively utilized to examine insect gene function, studies of miRNA function are still relatively uncommon. Thus, we employed CRISPR/Cas9 to knock out Sex-miR-2766-3p from S. exigua. However, the expression of SeCncC was not significantly altered in the knockout strain (2766-KO) compared with that of the WHS strain. This result suggested that a miRNA knockout might lack phenotypes because of genetic robustness. Additionally, we used transcriptome analysis to examine how the global gene expression patterns of the Sex-miR-2766-3p knockout strain varied. RNA-seq data revealed 1746 upregulated and 2183 downregulated differentially expressed genes (DEGs) in the 2766-KO strain, which might be the result of Sex-miR-2766-3p loss or DNA lesions as the trigger for transcriptional adaptation. GO function classification and KEGG pathway analyses showed that these DEGs were enriched for terms related to binding, catalytic activity, metabolic process, and signal transduction. Our findings demonstrated that S. exigua could compensate for the missing Sex-miR-2766-3p by maintaining the expression of SeCncC by other pathways.

7.
Int J Biol Macromol ; 217: 407-416, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35841957

RESUMO

Phryma leptostachya has attracted increasing attention because it is rich in furofuran lignans with a wide range of biological activities. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, one of the monolignol. Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step of monolignol biosynthesis, reducing cinnamyl aldehydes to cinnamyl alcohol. As it is in the terminal position of monolignol biosynthesis, its type and activity can cause significant changes in the total amount and composition of lignans. Herein, combined with bioinformatics analysis and in vitro enzyme assays, we clarified that CAD in P. leptostachya belonged to a multigene family, and identified nearly the entire CAD gene family. Our in-depth characterization about the functions and structures of two major CAD isoforms, PlCAD2 and PlCAD3, showed that PlCAD2 exhibited the highest catalytic activity, and coniferyl aldehyde was its preferred substrate, followed by PlCAD3, and sinapyl aldehyde was its preferred substrate. Considering the accumulation patterns of furofuran lignans and expression patterns of PlCADs, we speculated that PlCAD2 was the predominant CAD isoform responsible for furofuran lignans biosynthesis in P. leptostachya. Moreover, these CADs found here can also provide effective biological parts for lignans and lignins biosynthesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignanas , Oxirredutases do Álcool/química , Lignina/química , Filogenia
8.
J Econ Entomol ; 115(4): 1279-1284, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35604386

RESUMO

The beet armyworm, Spodoptera exigua (Hübna) is a serious agricultural pest that is challenging to control due to resistance to most pesticides, including pyrethroids. This resistance has previously been linked to the knockdown resistance (kdr) mutation (L1014F) of the voltage-gated sodium channel (VGSC) in S. exigua. To better understand the frequencies of the kdr mutation of SeVGSC and identify the evolutionary origins of kdr mutation in S. exigua, seven populations of S. exigua were collected in China, and partial SeVGSC genomic sequences for each individual were acquired. The bioassays showed that the survival rates of seven populations of S. exigua larvae exposed to the discriminating dose of beta-cypermethrin (0.05 mg/cm2) ranged from 91.66% to 100%, indicating that all seven populations had evolved resistance to beta-cypermethrin. The frequencies of kdr mutation (CTT to TTT) of SeVGSC of field populations ranged China were from 60% to 89.6%. The CTT to CAT substitution at this coding position resulting in the L1014H (kdr-H) mutation was found in only one individual from the QP18 population. Based on the phylogeny of SeVGSC alleles, it appeared that the kdr mutation in S. exigua populations had multiple origins, which has major consequences for pyrethroid effectiveness in the field. Thus, it is recommended to limit the use of pyrethroid and encourage rotation of insecticides with different modes of action for control of S. exigua to alleviate resistance development.


Assuntos
Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , China , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mutação , Piretrinas/farmacologia , Spodoptera , Canais de Sódio Disparados por Voltagem/genética
9.
Plant Sci ; 314: 111098, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895536

RESUMO

Verticillium dahliae causes vascular wilt disease on cotton (Gossypium hirsutum), resulting in devastating yield loss worldwide. While little is known about the mechanism of long non-coding RNAs (lncRNAs), several lncRNAs have been implicated in numerous physiological processes and diseases. To better understand V. dahliae pathogenesis, lncRNA was conducted in a V. dahliae virulence model. Potential target genes of significantly regulated lncRNAs were predicted using cis/trans-regulatory algorithms. This study provides evidence for lncRNAs' regulatory role in pathogenesis-related genes. Interestingly, lncRNAs were identified and varying in terms of RNA length and nutrient starvation treatments. Efficient pathogen nutrition during the interaction with the host is a requisite factor during infection. Our observations directly link to mutated V. dahliae invasion, explaining infected cotton have lower pathogenicity and lethality compared to V. dahliae. Remarkably, lncRNAs XLOC_006536 and XLOC_000836 involved in the complex regulation of pathogenesis-related genes in V. dahliae were identified. For the first time the regulatory role of lncRNAs in filamentous fungi was uncovered, and it is our contention that elucidation of lncRNAs will advance our understanding in the development and pathogenesis of V. dahliae and offer alternatives in the control of the diseases caused by fungus V. dahliae attack.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Resistência à Doença/genética , Gossypium/microbiologia , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , RNA Longo não Codificante/análise , Produtos Agrícolas/microbiologia , Regulação da Expressão Gênica de Plantas , Virulência/genética
10.
Front Plant Sci ; 12: 749630, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795685

RESUMO

Patatin-like proteins (PLPs) have non-specific lipid acyl hydrolysis (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well documented. However, the function of PLPs in plant defense responses against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) PLP gene GhPLP2. The expression of GhPLP2 was induced upon treatment with Verticillium dahliae, the signaling molecules jasmonic acid (JA) and ethylene (ETH) in cotton plants. Subcellular localization revealed that GhPLP2 was localized to the plasma membrane. GhPLP2-silenced cotton plants were more susceptible to infection by V. dahliae, while the overexpression of GhPLP2 in Arabidopsis enhanced its resistance to V. dahliae, which was apparent as mild symptoms, and a decrease in the disease index and fungal biomass. The hypersensitive response, deposition of callose, and H2O2 accumulation triggered by V. dahliae elicitor were reduced in GhPLP2-silenced cotton plants. The overexpression of GhPLP2 in Arabidopsis resulted in the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and facilitated the biosynthesis of JA and JA-mediated defensive responses. GhPLP2 silencing in cotton plants consistently reduced the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and suppressed the biosynthesis of JA and the defensive responses mediated by JA. These results indicate that GhPLP2 is involved in the resistance of cotton to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activating the JA signaling pathway.

11.
Sci Rep ; 10(1): 12510, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719475

RESUMO

Germin-like proteins (GLPs) are a diverse and ubiquitous family of plant glycoproteins belonging to the cupin super family; they play considerable roles in plant responses against various abiotic and biotic stresses. Here, we provide evidence that GLP2 protein from cotton (Gossypium hirsutum) functions in plant defense responses against Verticillium dahliae, Fusarium oxysporum and oxidative stress. Purified recombinant GhGLP2 exhibits superoxide dismutase (SOD) activity and inhibits spore germination of pathogens. Virus-induced silencing of GhGLP2 in cotton results in increased susceptibility to pathogens, plants exhibited severe wilt on leaves, enhanced vascular browning and suppressed callose deposition. Transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing GhGLP2 showed significant resistance to V. dahliae and F. oxysporum, with reduced mycelia growth, increased callose deposition and cell wall lignification at infection sites on leaves. The enhanced tolerance of GhGLP2-transgenic Arabidopsis to oxidative stress was investigated by methyl viologen and ammonium persulfate treatments, along with increased H2O2 production. Further, the expression of several defense-related genes (PDF1.2, LOX2, and VSP1) or oxidative stress-related genes (RbohD, RbohF) was triggered by GhGLP2. Thus, our results confirmed the involvement of GhGLP2 in plant defense response against Verticillium and Fusarium wilt pathogens and stress conditions.


Assuntos
Resistência à Doença , Fusarium/fisiologia , Gossypium/imunologia , Gossypium/microbiologia , Estresse Oxidativo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Verticillium/fisiologia , Antifúngicos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/microbiologia , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Fusarium/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Gossypium/efeitos dos fármacos , Gossypium/genética , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Verticillium/efeitos dos fármacos
12.
BMC Plant Biol ; 19(1): 379, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31455203

RESUMO

BACKGROUND: Metabolic pathways are interconnected and yet relatively independent. Genes involved in metabolic modules are required for the modules to run. Study of the relationships between genes and metabolic modules improves the understanding of metabolic pathways in plants. The WIN transcription factor activates the cuticle biosynthesis pathway and promotes cuticle biosynthesis. The relationship between the WIN transcription factor and other metabolic pathways is unknown. Our aim was to determine the relationships between the main genes involved in cuticle biosynthesis and those involved in other metabolic pathways. We did this by cloning a cotton WIN gene, GhWIN2, and studying its influence on other pathways. RESULTS: As with other WIN genes, GhWIN2 regulated expression of cuticle biosynthesis-related genes, and promoted cuticle formation. Silencing of GhWIN2 resulted in enhanced resistance to Verticillium dahliae, caused by increased content of salicylic acid (SA). Moreover, silencing of GhWIN2 suppressed expression of jasmonic acid (JA) biosynthesis-related genes and content. GhWIN2 positively regulated the fatty acid biosynthesis pathway upstream of the JA biosynthesis pathway. Silencing of GhWIN2 reduced the content of stearic acid, a JA biosynthesis precursor. CONCLUSIONS: GhWIN2 not only regulated the cuticle biosynthesis pathway, but also positively influenced JA biosynthesis and negatively influenced SA biosynthesis.


Assuntos
Ciclopentanos/metabolismo , Gossypium/genética , Oxilipinas/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Verticillium/fisiologia , Sequência de Aminoácidos , Resistência à Doença/genética , Gossypium/metabolismo , Gossypium/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
13.
Front Plant Sci ; 10: 583, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134119

RESUMO

Germin-like proteins (GLPs) are water-soluble plant glycoproteins belonging to the cupin superfamily. The important role of GLPs in plant responses against various abiotic and biotic stresses, especially pathogens, is well validated. However, little is known about cotton GLPs in relation to fungal pathogens. Here, a novel GLP gene was isolated from Gossypium hirsutum and designated as GhABP19. The expression of GhABP19 was upregulated in cotton plants inoculated with Verticillium dahliae and Fusarium oxysporum and in response to treatment with jasmonic acid (JA) but was suppressed in response to salicylic acid treatment. A relatively small transient increase in GhABP19 was seen in H2O2 treated samples. The three-dimensional structure prediction of the GhABP19 protein indicated that the protein has three histidine and one glutamate residues responsible for metal ion binding and superoxide dismutase (SOD) activity. Purified recombinant GhABP19 exhibits SOD activity and could inhibit growth of V. dahliae, F. oxysporum, Rhizoctonia solani, Botrytis cinerea, and Valsa mali in vitro. To further verify the role of GhABP19 in fungal resistance, GhABP19-overexpressing Arabidopsis plants and GhABP19-silenced cotton plants were developed. GhABP19-transgenic Arabidopsis lines showed much stronger resistance to V. dahliae and F. oxysporum infection than control (empty vector) plants did. On the contrary, silencing of GhABP19 in cotton conferred enhanced susceptibility to fungal pathogens, which resulted in necrosis and wilt on leaves and vascular discoloration in GhABP19-silenced cotton plants. The H2O2 content and endogenous SOD activity were affected by GhABP19 expression levels in Arabidopsis and cotton plants after inoculation with V. dahliae and F. oxysporum, respectively. Furthermore, GhABP19 overexpression or silencing resulted in activation or suppression of JA-mediated signaling, respectively. Thus, GhABP19 plays important roles in the regulation of resistance to verticillium and fusarium wilt in plants. These modulatory roles were exerted by its SOD activity and ability to activate the JA pathway. All results suggest that GhABP19 was involved in plant disease resistance.

14.
Plant Sci ; 284: 127-134, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31084865

RESUMO

Avr9/Cf-9-INDUCED F-BOX1 (ACIF1) was first identified during screening of Avr9/Cf-9-elicited genes in tobacco. Further analysis revealed that ACIF1 was required for hypersensitive responses triggered by various elicitors in tobacco and tomato, indicating that it may be involved in various disease resistance. Here, we cloned its cotton (Gossypium hirsutum) homolog GhACIF1, which encodes an F-box protein. We show that GhACIF1 interacts with the putative SKP1-like protein, named GhSKP1. Disease resistance assays show that GhACIF1 enhances resistance to Verticillium dahliae in Arabidopsis plants, while silencing of GhACIF1 confers sensitivity to V. dahliae in cotton. Further analysis show that PevD1 elicitor activates hypersensitive and acquired immune response mediated by GhACIF1. Collectively, these results indicate that GhACIF1 contributes to protection against V. dahliae infection.


Assuntos
Resistência à Doença , Proteínas F-Box/fisiologia , Gossypium/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/fisiologia , Verticillium , Resistência à Doença/fisiologia , Proteínas F-Box/genética , Inativação Gênica , Gossypium/genética , Gossypium/microbiologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Técnicas do Sistema de Duplo-Híbrido , Verticillium/metabolismo
15.
Front Plant Sci ; 9: 896, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018623

RESUMO

Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins mediate membrane fusion and deliver cargo to specific cellular locations through vesicle trafficking. Synaptosome-associated protein of 25 kDa (SNAP25) is a target membrane SNARE that drives exocytosis by fusing plasma and vesicular membranes. In this study, we isolated GhSNAP33, a gene from cotton (Gossypium hirsutum), encoding a SNAP25-type protein containing glutamine (Q)b- and Qc-SNARE motifs connected by a linker. GhSNAP33 expression was induced by H2O2, salicylic acid, abscisic acid, and polyethylene glycol 6000 treatment and Verticillium dahliae inoculation. Ectopic expression of GhSNAP33 enhanced the tolerance of yeast cells to oxidative and osmotic stresses. Virus-induced gene silencing of GhSNAP33 induced spontaneous cell death and reactive oxygen species accumulation in true leaves at a later stage of cotton development. GhSNAP33-deficient cotton was susceptible to V. dahliae infection, which resulted in severe wilt on leaves, an elevated disease index, enhanced vascular browning and thylose accumulation. Conversely, Arabidopsis plants overexpressing GhSNAP33 showed significant resistance to V. dahliae, with reduced disease index and fungal biomass and elevated expression of PR1 and PR5. Leaves from GhSNAP33-transgenic plants showed increased callose deposition and reduced mycelia growth. Moreover, GhSNAP33 overexpression enhanced drought tolerance in Arabidopsis, accompanied with reduced water loss rate and enhanced expression of DERB2A and RD29A during dehydration. Thus, GhSNAP33 positively mediates plant defense against stress conditions and V. dahliae infection, rendering it a candidate for the generation of stress-resistant engineered cotton.

16.
Plant J ; 96(3): 546-561, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30053316

RESUMO

Verticillium wilt, one of the most devastating diseases of cotton (Gossypium hirsutum), causes severe yield and quality losses. Given the effectiveness of plant polygalacturonase-inhibiting proteins (PGIPs) in reducing fungal polygalacturonase (PG) activity, it is necessary to uncover the key functional amino acids to enhance cotton resistance to Verticillium dahliae. To identify novel antifungal proteins, the selectivity of key amino acids was investigated by screening against a panel of relevant PG-binding residues. Based on the obtained results, homologous models of the mutants were established. The docking models showed that hydrogen bonds and structural changes in the convex face in the conserved portion of leucine-rich repeats (LRRs) may be essential for enhanced recognition of PG. Additionally, we successfully constructed Cynanchum komarovii PGIP1 (CkPGIP1) mutants Asp176Val, Pro249Gln, and Asp176Val/Pro249Gln and G. hirsutum PGIP1 (GhPGIP1) mutants Glu169Val, Phe242Gln, and Glu169Val/Phe242Gln with site-directed mutagenesis. The proteins of interest can effectively inhibit VdPG1 activity and V. dahliae mycelial growth in a dose-dependent manner. Importantly, mutants that overproduced PGIP in Arabidopsis and cotton showed enhanced resistance to V. dahliae, with reduced Verticillium-associated chlorosis and wilting. Furthermore, the lignin content was measured in mutant-overexpressing plants, and the results showed enhanced lignification of the xylem, which blocked the spread of V. dahliae. Thus, using site-directed mutagenesis assays, we showed that mutations in CkPGIP1 and GhPGIP1 give rise to PGIP versatility, which allows evolving recognition specificities for PG and is required to promote Verticillium resistance in cotton by restricting the growth of invasive fungal pathogens.


Assuntos
Resistência à Doença/genética , Gossypium/enzimologia , Doenças das Plantas/imunologia , Poligalacturonase/genética , Verticillium/fisiologia , Gossypium/genética , Gossypium/imunologia , Mutação , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Poligalacturonase/metabolismo
17.
Front Plant Sci ; 9: 642, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881391

RESUMO

Many subunits of the Mediator transcriptional co-activator complex are multifunctional proteins that regulate plant immunity in Arabidopsis. Cotton cyclin-dependent kinase E (GhCDKE), which is a subunit of the cotton (Gossypium hirsutum) Mediator complex, has been annotated, but the biological functions of this gene associated with regulating disease resistance have not been characterized. Here, we cloned GhCDKE from cotton and confirmed that GhCDKE belonged to the E-type CDK family in the phylogenetic tree, and, as in other eukaryotes, we found that GhCDKE interacted with C-type cyclin (GhCycC) by yeast two-hybrid and luciferase complementation imaging assays. Expression of GhCDKE in cotton was induced by Verticillium dahliae infection and MeJA treatment, and silencing of GhCDKE expression in cotton led to enhanced susceptibility to V. dahliae, while overexpression of GhCDKE in Arabidopsis thaliana enhanced resistance to this pathogen. Transgenic expression assay demonstrated that the transcriptional activity of GhPDF1.2pro:LUC in GhCDKE-silenced cotton was dramatically inhibited. In addition, the expression of jasmonic acid (JA)-regulated pathogen-responsive genes was dramatically upregulated in GhCDKE-overexpressed plants after inoculation with V. dahliae, and the roots of GhCDKE-overexpressed A. thaliana were more susceptible to JA treatment. These results indicated that GhCDKE regulates resistance against V. dahliae and that this resistance is mediated by JA response pathway.

18.
Plant Physiol ; 176(3): 2202-2220, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29363564

RESUMO

Pectins are major components of the primary plant cell wall, which functions as the primary barrier against pathogens. Pectin methylesterases (PMEs) catalyze the demethylesterification of the homogalacturonan domains of pectin in the plant cell wall. Their activity is regulated by PME inhibitors (PMEIs). Here, we provide evidence that the pectin methylesterase-inhibiting protein GhPMEI3 from cotton (Gossypium hirsutum) functions in plant responses to infection by the fungus Verticillium dahliae GhPMEI3 interacts with PMEs and regulates the expression of a specific fungal polygalacturonase (VdPG1). Ectopic expression of GhPMEI3 increased pectin methyl esterification and limited fungal disease in cotton, while also modulating root elongation. Enzymatic analyses revealed that GhPMEI3 efficiently inhibited the activity of cotton GhPME2/GhPME31. Experiments using transgenic Arabidopsis (Arabidopsis thaliana) plants expressing the GhPMEI3 gene under the control of the CaMV 35S promoter revealed that GhPMEI3 inhibits the endogenous PME activity in vitro. Moreover, the enhanced resistance to V. dahliae was associated with altered VdPG1 expression. Virus-induced silencing of GhPMEI3 resulted in increased susceptibility to V. dahliae Further, we investigated the interaction between GhPMEI3 and GhPME2/GhPME31 using inhibition assays and molecular docking simulations. The peculiar structural features of GhPMEI3 were responsible for the formation of a 1:1 stoichiometric complex with GhPME2/GhPME31. Together, these results suggest that GhPMEI3 enhances resistance to Verticillium wilt. Moreover, GhPMEI3-GhPMEs interactions would be needed before drawing the correlation between structure-function and are crucial for plant development against the ever-evolving fungal pathogens.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/química , Gossypium/genética , Proteínas de Plantas/farmacologia , Verticillium/patogenicidade , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/microbiologia , Interações Hospedeiro-Patógeno , Simulação de Acoplamento Molecular , Pectinas/metabolismo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Eletricidade Estática
19.
Sci Rep ; 7: 39840, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28079053

RESUMO

Polygalacturonase-inhibiting protein (PGIP), belonging to a group of plant defence proteins, specifically inhibits endopolygalacturonases secreted by pathogens. Herein, we showed that purified GhPGIP1 is a functional inhibitor of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, the two fungal pathogens causing cotton wilt. Transcription of GhPGIP1 was increased in cotton upon infection, wounding, and treatment with defence hormone and H2O2. Resistance by GhPGIP1 was examined by its virus-induced gene silencing in cotton and overexpression in Arabidopsis. GhPGIP1-silenced cotton was highly susceptible to the infections. GhPGIP1 overexpression in transgenic Arabidopsis conferred resistance to the infection, accompanied by enhanced expression of pathogenesis-related proteins (PRs), isochorismate synthase 1 (ICS1), enhanced disease susceptibility 1 (EDS1), and phytoalexin-deficient 4 (PAD4) genes. Transmission electron microscopy revealed cell wall alteration and cell disintegration in plants inoculated with polygalacturonase (PGs), implying its role in damaging the cell wall. Docking studies showed that GhPGIP1 interacted strongly with C-terminal of V. dahliae PG1 (VdPG1) beyond the active site but weakly interacted with C-terminal of F. oxysporum f. sp. vasinfectum (FovPG1). These findings will contribute towards the understanding of the roles of PGIPs and in screening potential combat proteins with novel recognition specificities against evolving pathogenic factors for countering pathogen invasion.


Assuntos
Arabidopsis/fisiologia , Fusariose/imunologia , Fusarium/imunologia , Gossypium/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Verticillium/imunologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Peróxido de Hidrogênio/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Água/metabolismo
20.
Sci Rep ; 5: 10534, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26065910

RESUMO

Novelty seeking (NS) is a personality trait reflecting excitement in response to novel stimuli. High NS is usually a predictor of risky behaviour such as drug abuse. However, the relationships between NS and risk-related cognitive processes, including individual risk preference and the brain activation associated with risk prediction, remain elusive. In this fMRI study, participants completed the Tridimensional Personality Questionnaire to measure NS and performed a probabilistic decision making task. Using a mathematical model, we estimated individual risk preference. Brain regions associated with risk prediction were determined via fMRI. The NS score showed a positive correlation with risk preference and a negative correlation with the activation elicited by risk prediction in the right posterior insula (r-PI), left anterior insula (l-AI), right striatum (r-striatum) and supplementary motor area (SMA). Within these brain regions, only the activation associated with risk prediction in the r-PI showed a correlation with NS after controlling for the effect of risk preference. Resting-state functional connectivity between the r-PI and r-striatum/l-AI was negatively correlated with NS. Our results suggest that high NS may be associated with less aversion to risk and that the r-PI plays an important role in relating risk prediction to NS.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Comportamento Exploratório/fisiologia , Imageamento por Ressonância Magnética , Assunção de Riscos , Adulto , Feminino , Humanos , Masculino , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA